Summative - DP1 Math HL Complex Numbers

Your Name:

DP1 - Mathematics HL - Complex numbers.
23rd February. 2017.

Solve any 10 questions on the answer sheets.

Question 1: [6]

Simplify and write the following in the form of $a+b \boldsymbol{i}$: [No calculator please]
(a) $\frac{1}{i}\left(\frac{1}{\sqrt{5}}-\frac{3 i}{\sqrt{3}}\right)$
(b) $\frac{1}{1+i}$
(c) $\frac{1}{1-i}$
(d) $2 i-\frac{2}{i+\sqrt{3}}$
(e) 3^{i}
(f) $(-3-3 i)^{2}$

Question 2: [6]

Let $z=1+i \sqrt{3}$ and $w=3 \sqrt{3}-3 i$.
(a) Find the modulus and the argument of z and w.
(b) Represent z and w on the same Argand diagram.
(c) Find the modulus and the argument of the product $\mathbf{z w}$. Comment on your answer.

Question 3: [6]

Consider the complex numbers $z=1+2 \mathrm{i}$ and $w=2+a \mathrm{i}$, where $a \in \mathbb{R}$.
Find a when
(a) $\quad|w|=2|z|$;
(b) $\operatorname{Re}(z w)=2 \operatorname{Im}(z w)$.

Question 4: [6]

If $z=\operatorname{cis}(\theta)$, prove that: $i \tan (\theta)=\frac{z^{2}-1}{z^{2}+1}$

Question 5: [6]

Using de Moivre's theorem, or otherwise, prove that:
(a) $\sin 3 x=3 \sin x-4 \sin ^{3} x$
(b) $\cos 3 x=4 \cos ^{3} x-3 \cos x$

Question 6: [6]

Find the fourth roots of unity in the form: $r \operatorname{cis}(\theta)$. [Hint: solve $z^{4}=1$]

Question 7: [6]

Show that:
(a) $\quad(n-1)\left(n^{2}+n+1\right)=n^{3}-1$
(b) Given: $z=e^{i(2 \pi / 3)}$, Show that $z^{3}=1$, and $1+z+z^{2}=0$
(c) Express each of the following expression in terms of z. (write in simplest form)
i. z^{8}
ii. $(1-z)^{2}+4 z$
iii. z^{100}

Question 8: [6]

Show that $\cos z=\frac{e^{i z}+e^{-i z}}{2}$. Hence find the exact value of $\cos i$. Also define an expression for $\sin z$, where z is a complex number.

Question 9: [6]

Given $z=\cos \theta+\mathrm{i} \sin \theta$, show that: $z^{n}-\frac{1}{z^{n}}=2 \mathrm{i} \sin (n \theta)$.

Question 10: [6]

Find, in its simplest form, the argument of $(\sin x+i(1-\cos x))^{2}$ where \boldsymbol{x} is an acute angle.

Question 11: [6]

(a) Find b where: $\frac{2+b \mathrm{i}}{1-b \mathrm{i}}=\frac{7}{10}+\frac{9}{10} \mathrm{i}$
(b) Given that $(a+b i)^{2}=3+4 \mathrm{i}$ obtain a pair of simultaneous equations involving a and b. Hence solve for a and b.

