Summative – DP1 Math HL Complex Numbers

Your Name:

DP1 – Mathematics HL – Complex numbers.

23rd February. 2017.

Solve any 10 questions on the answer sheets.

Question 1: [6]

Simplify and write the following in the form of a + bi: [No calculator please]

(a) $\frac{1}{i} \left(\frac{1}{\sqrt{5}} - \frac{3i}{\sqrt{3}} \right)$ (b) $\frac{1}{1+i}$ (c) $\frac{1}{1-i}$ (d) $2i - \frac{2}{i+\sqrt{3}}$ (e) 3^{i} (f) $(-3-3i)^{2}$

Question 2: [6]

Let $z = 1 + i\sqrt{3}$ and $w = 3\sqrt{3} - 3i$.

- (a) Find the modulus and the argument of z and w.
- (b) Represent *z* and *w* on the same Argand diagram.
- (c) Find the modulus and the argument of the product *zw*. Comment on your answer.

Question 3: [6]

Consider the complex numbers z = 1 + 2i and w = 2 + ai, where $a \in \mathbb{R}$.

Find a when

- (a) |w| = 2 |z|;
- (b) Re (zw) = 2 Im(zw).

Question 4: [6]

If $z = \operatorname{cis}(\theta)$, prove that: $i \tan(\theta) = \frac{z^2 - 1}{z^2 + 1}$

Question 5: [6]

Using de Moivre's theorem, or otherwise, prove that:

- (a) $\sin 3x = 3 \sin x 4 \sin^3 x$
- (b) $\cos 3x = 4 \cos^3 x 3 \cos x$

Question 6: [6]

Find the fourth roots of unity in the form: $r \operatorname{cis}(\theta)$. [Hint: solve $z^4 = 1$]

Question 7: [6]

Show that:

- (a) $(n-1)(n^2 + n + 1) = n^3 1$
- (b) Given: $z = e^{i(2\pi/3)}$, Show that $z^3 = 1$, and $1 + z + z^2 = 0$
- (c) Express each of the following expression in terms of z. (write in simplest form)
 - i. z^8 ii. $(1-z)^2 + 4z$ iii. z^{100}

Question 8: [6]

Show that $\cos z = \frac{e^{iz} + e^{-iz}}{2}$. Hence find the exact value of $\cos i$. Also define an expression for $\sin z$, where z is a complex number.

Question 9: [6]

Given $z = \cos \theta + i \sin \theta$, show that: $z^n - \frac{1}{z^n} = 2i \sin (n\theta)$.

Question 10: [6]

Find, in its simplest form, the argument of $(\sin x + i (1 - \cos x))^2$ where x is an acute angle.

Question 11: [6]

(a) Find *b* where:
$$\frac{2+bi}{1-bi} = \frac{7}{10} + \frac{9}{10}i$$

(b) Given that $(a + bi)^2 = 3 + 4i$ obtain a pair of simultaneous equations involving *a* and *b*. Hence solve for *a* and *b*.

[&]quot;If I feel unhappy, I do mathematics to become happy. If I am happy, I do mathematics to keep happy" - Alfred Renyi